On a multistage discrete stochastic optimization problem with stochastic constraints and nested sampling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medium Term Hydroelectric Production Planning - A Multistage Stochastic Optimization Model

Multistage stochastic programming is a key technology for making decisions over time in an uncertain environment. One of the promising areas in which this technology is implementable, is medium term planning of electricity production and trading where decision makers are typically faced with uncertain parameters (such as future demands and market prices) that can be described by stochastic proc...

متن کامل

Stochastic Optimization with Importance Sampling

Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Gradient Descent (prox-SGD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a ra...

متن کامل

medium term hydroelectric production planning - a multistage stochastic optimization model

multistage stochastic programming is a key technology for making decisions over time in an uncertain environment. one of the promising areas in which this technology is implementable, is medium term planning of electricity production and trading where decision makers are typically faced with uncertain parameters (such as future demands and market prices) that can be described by stochastic proc...

متن کامل

Stochastic Optimization with Bandit Sampling

Many stochastic optimization algorithms work by estimating the gradient of the cost function on the fly by sampling datapoints uniformly at random from a training set. However, the estimator might have a large variance, which inadvertantly slows down the convergence rate of the algorithms. One way to reduce this variance is to sample the datapoints from a carefully selected non-uniform distribu...

متن کامل

Optimization with Stochastic Dominance Constraints

We introduce stochastic optimization problems involving stochastic dominance constraints. We develop necessary and sufficient conditions of optimality and duality theory for these models and show that the Lagrange multipliers corresponding to dominance constraints are concave nondecreasing utility functions. The models and results are illustrated on a portfolio optimization problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2020

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-020-01518-w